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Abstract. On-the-go yield monitors have been available for both grain and bulk crops. Most of the yield
monitors today provide yield measurement at a fixed time interval. Conversion of these point yield data
into raster yield maps for further analysis is necessary. In this study, a data-blocking procedure is proposed
to create raster yield maps from point yield data. The blocking procedure includes: (1) converting the
fixed-time-interval data into fixed-distance-interval data; (2) using a moving average algorithm to estimate
a cell value when there are sufficient data points within the cell; (3) using a geostatistical algorithm to
estimate a cell value when there are not enough data points within the cell but values of its neighboring
cells are known; and (4) calculating an uncertainty index for each cell value estimation. An example
application of the yield-blocking procedure with potato harvest data in 1996 was given.
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Introduction

Yield mapping is one of the most successful technologies currently used in site-specific
crop management. Knowledge of within-field yield variation can help identify site-
specific management needs of each individual field. On-the-go yield mapping systems
now have been available for many different crops (Borgelt and Sudduth, 1992;
Schneider et al., 1996; Walter et al., 1996). A typical yield mapping system includes a
yield monitor and positioning equipment. Yield monitors for grain crops commonly
use sensors to measure the grain flow rate and moisture at the exit of the clean grain
elevator. For bulk crops such as potatoes, load cells are placed under the harvester
conveyor system to determine the crop weight. Currently, the most popular positioning
equipment is the Global Positioning System (GPS) receiver.

The errors of a yield mapping system come from many different sources (Blackmore
and Marshall, 1996). Two of the most significant sources of errors have been identified
as the varying harvest width and the time delay between actual harvest position and
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sensing of the crop yield. Various techniques have been developed to reduce these
errors. For examples, Vansichen and Baerdemaeker (1991), and Reitz and Kutzbach
(1996) used an ultrasonic distance transducer to measure the unused portion of the
combine header width for determining the width of swath cut. An accuracy of better
than 0.02 m was reported. As a software alternative, Han er al. (1997) developed a
bitmap method for determining effective combine cut width. If a high-accuracy
positioning system is available, the bitmap method can be used to accurately calculate
the actual harvest area for each instant yield measurement. A similar concept called
potential mapping was proposed by Blackmore and Marshall (1996) to reduce the
errors associated with the use of a fixed harvest width, although the question as how to
calculate the actual harvest area from the positional information was not addressed in
the report. The calculation of time delay seems to be more complicated, since the
crop transport dynamics must be considered. Searcy et al. (1989) used a first-order
time delay equation to describe the combine grain transport dynamics. However, the
parameters of the transfer function were difficult to determine. At present, a fixed time
delay is often applied for the whole field or for each individual path.

After the errors associated with the harvest width and time delay have been
corrected, a reasonably accurate set of point yield data can be obtained. The point
yield data are discrete in space, with each data point representing an average yield
over an area surrounding that point. The distribution of these points in a field is
irregular due to changes in harvester speed, removal of obviously erroneous data,
missing of data points, and other factors. For the purposes of visualization and
analysis, it is often necessary to interpolate the irregularly spaced point yield data to
a regular grid. We call this process data blocking.

Two groups of interpolation methods have been commonly used for blocking yield
data: kriging and inverse distance. The kriging procedure can provide the best linear
unbiased estimates and has been used extensively to evaluate variability of soil
physical and chemical properties (Burgess and Webster, 1980a,b; Meirvenne and
Hofman, 1989; Paz et al., 1996). The kriging procedure is most useful when the
available data set is sparse and the spatial correlation of the property is clear.
However, point yield data are often very dense, which makes the kriging procedure
very inefficient in calculation. Although many commercial yield-mapping software
programs use the inverse distance method instead of kriging, the reasons for using
this method are often unclear. Moreover, many yield-mapping software programs
only provide the yield maps as the end product, without indicating the accuracy of
these maps. Clearly, a yield map created by a sparse data set is most likely not as
accurate as the one created by a dense data set. The objective of this research is to
develop an efficient yield-blocking procedure for yield map generation and for the
accuracy assessment of the generated yield map.

Materials and methods
The proposed yield-blocking procedure (Figure 1) includes: (1) converting the point

yield data set (often in fixed time interval) into a fixed-distance-interval data set;
(2) using a moving average algorithm to estimate a cell value when there are sufficient
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Figure 1. Flowchart of the yield blocking procedure.

data points within the cell; (3) using a geostatistical algorithm to estimate a cell value
when there are not enough data points within the cell but values of its neighboring
cells are known; and (4) assessing the uncertainty for each cell value estimation.

Data conversion

Most yield mapping systems collect yield data at a fixed time interval. Since the
travel speed of the harvester may vary in the field, the distance between two yield
measurement points is usually not fixed. Suppose that we have n yield measurements,
y;(i=1,2,...,n),in an area A, and that each measurement y, is taken from a subarea
A;. The average yield, y, in the area A is:

?:Z(Yi*Ai)/ZAi (1)
i=1 i=1
The arithmetic average of the n yield measurements, y’, is:
LT
y'=-d v (2)
i=1

Unless all subareas A; are of equal size, the average yield in the area A does not equal
the arithmetic average of the n yield measurements. As an example, suppose we have
two yield measurement points, y; =10 Mg/ha and y, =15 Mg/ha. These two mea-
surements are taken from two unequal subareas, A; =20 m? and A, =25 m?, respec-
tively. The average yield for the entire area A (A =A; +A,) is 12.8 Mg/ha. However,
the simple arithmetic average of these two yield measurements is 12.5 Mg/ha. The
data conversion procedure converts the original yield data set into a new yield data
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set so that each yield point in the new data set corresponds to the same size of area.
This new yield data set will be called the converted yield data set.
Let y; be a point yield taken from a subarea A;. A; is calculated by:

A,‘ = W,‘*L,' (3)

where W; is the effective harvest width and L; is the harvest distance for the ith yield
measurement. Although recorded at discrete points, yield is a continuous variable. If
A; is small enough, we can assume that yield is a constant y; within each subarea A;.
Practically, we can take k; yield samples along the harvest distance L; to represent
the continuous distribution of the yield in the subarea A,. The k; yield samples have
the same value y; and are evenly spaced with a small separation distance d along the
harvest distance L;. Thus the converted yield data set includes a total of m = Y/ | k;
yield points. Assuming a constant effective harvest width, then, each yield point in
the converted data set corresponds to the same size of area, W, *d.

The converted yield data set is based on a fixed-distance interval, d. Unlike the
original yield measurements, each yield point in the converted yield data set has the
same weight. This allows many conventional statistical formulas to be easily applied
to the converted yield data set. For example, the average yield in an area A is the
arithmetic average of all the yield points within that area.

Another feature of the data conversion is that the method provides yield estimates
within the gaps between any two consecutive yield measurement points. These
gaps are artifacts due to the time interval selected to record yield data. Treating these
gaps as areas with no yield does not make sense. With the data conversion algorithm,
the gaps can be reduced small enough (by using a small fixed-distance interval d) so
that the converted yield data set can approximate the continuous yield distribution.
However, some gaps such as those caused by momentary GPS signal loss should still
be treated as areas of missing yield measurements.

Cell value estimation using a moving average algorithm

The fixed-distance interval data set is not a grid because the selected fixed-distance
interval d is usually much smaller than the harvest width W. The next step of the data
blocking procedure is to convert this data set into a regular grid. The cell size selection
for the latter grid is primarily based on the minimum management size for the field.

With normal operation of yield mapping systems, yield data are often collected
over the entire field. For most cells, there will be a large number of yield data points
taken within the individual cell. The average value of the measured yield in a cell
would best represent the cell value. When the converted yield data set is used, the
average yield within a cell is simply the arithmetic average of all the yield points
within that cell. This process estimates cell values for most of the cells.

Cell value estimation using a geostatistical algorithm

For some cells in the field, there may not be sufficient area coverage by the measured
yield data within the cell. This may be due to a number of factors such as removal of
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obviously erroneous data, or missing data points. When the area coverage by the
measured data is not large enough, using an average measurement yield for the cell
value is not reliable. When no measurement data are available within a cell, the cell
value must be estimated from data outside the cell.

Although an inverse distance weighting method is often used for yield data
interpolation and its accuracy is comparable with the kriging method, the latter is
preferred in our study because of its capability to establish a confidence level for each
cell estimation. The theoretical background of kriging and the equations defining the
kriging algorithm can be found in many references (Isaaks and Srivastava, 1989;
Journel and Huijbregts, 1978; Matheron, 1963). A computer program developed by
Bogaert et al. (1995) was used for the kriging analysis in this study.

In applying the kriging method to estimate a cell value, the main question is
whether we should use the sample yields (from the converted data set) or the known
cell values (from previous moving average estimation) as neighbors of the cell to be
estimated. The main concern in using the first approach is that the number of yield
points within a reasonable search distance around the estimated cell will be so large
that the time required to solve the kriging system of equations is impractical.
However, using the known cell-value approach is also not without question, since the
known cell values are not original and they are not point values as required by
kriging. However, if the cell size is small enough so that the known cell values can be
treated as point data, the latter approach is a better choice.

Assessing the uncertainty for each cell estimation

The single cell value obtained from the previous steps is only a reasonable approx-
imation of the true cell average. Qualitatively, we know that there is a difference
between the estimated cell value and the true cell value. There is uncertainty
associated with this difference. Other terms, such as reliability, confidence, accuracy,
can also be used to express the same concept.

To assess the uncertainty, several factors that influence the estimation error should
be considered. One obvious factor is the number of measured yield points (or the area
coverage by the measured yield data within the cell). Assuming yield measurement
error is negligible, increasing the number of measurements can generally reduce the esti-
mation error. The second factor, which perhaps has more influence on the estimation
error, is the nature of the yield distribution. Estimates will be more reliable for a well-
behaved yield variable (such as one with a uniform distribution) than for a very erratic
yield variable. Other factors, such as the spatial arrangement of the available yield
data can also affect the accuracy of yield estimation.

Confidence intervals are the most familiar way of reporting uncertainty. A more
general method is to use a probability distribution to assess the uncertainty.
However, neither method provides a single index of uncertainty, which makes the
graphical representation of uncertainty difficult. We propose using a single
uncertainty index for each cell estimation.

For those cell values estimated by the moving average algorithm, the uncertainty
index is defined as the percentage of the total area not covered by the measured yield
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points. Mathematically, it is expressed as: 100 * (A; — A})/A;, where A; is the total area of
cell j and A} is the cumulative yield measurement area within cell j. This index is simple
to calculate, and it captures the essential source of uncertainty: not enough measure-
ments. Since the statistical properties of the yield distribution are not considered, the
method may exaggerate the uncertainty in those cells with low percent coverage of the
measured yield. For example, if the yield has a fairly uniform distribution in a cell, a
few measurement points can provide a good cell-value estimate. However, the
uncertainty index would still be calculated as very high. Fortunately, this situation is
avoided in our procedure since we do not use the moving average algorithm when the
area coverage by the measured yield data is below a threshold.

For other cell values estimated by the geostatistical algorithm, the uncertainty
index is defined as the percentage of the estimation variance: 100 (JJZ /o), where
af is the estimation variance for cell j and 02 the maximum estimation variance for
the whole field. This index accounts for the various factors that influence the
estimation error (Isaaks and Srivastava, 1989). The estimation variance depends on
the covariance model of the yield variable.

Example data set

A 53.9 ha (133 acre) field, equipped with a center pivot irrigation system, was
selected for study in 1996. The field, located in eastern Washington, was variable in
topography, soil texture, and soil test NOs-N, P, and K. Average annual rainfall is
less than 250 mm. A short-season potato (Solanum tuberosum L.) variety, ‘“‘Shepody,”
was planted in the field on March 20-22, 1996. Water and nitrogen were applied
through the irrigation system in accordance with standard grower practice.
Additional information about the study can be found in Schneider et al. (1997).

Potato yield mapping was conducted from late July to early August. HarvestMaster
HM-500" yield monitors were installed on two four-row Lockwood potato diggers.
Yield data were recorded at a 3-s time interval. Sub-meter accuracy Differential
Global Positioning System (DGPS) receivers were used to record positions. A time
delay based on the total travel distance of the potato mass and belt speed was applied
to each record. The actual weight of the potatoes in each truck was measured and used
to adjust the recorded yield data.

Results and discussion

A total of 21,282 yield data points were collected in the field (Figure 2). Data were
missing on two large bands (A and B) because yield monitors were not installed until
after the first day of the harvest. Several small bands with no yield data occurred
when, due to mechanical problems, a yield monitor-equipped digger was replaced
with an unequipped digger. Band C was the result of alternative swaths situation
where only one of the two harvesters was equipped with the yield monitor. Some
data collected on the edges of the field were not reliable and were removed from
further analysis. The descriptive statistics for the point yield data set (Set A) are
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Figure 2. Yield data collected on the potato field, a total of 21,282 yield points.

Table 1. Descriptive statistics for different yield data sets

Statistics Set A* Set B° Set C* Set D¢ Set E°
Number of points/cells 21282 7267 5159 247 241

Mean (Mg/ha) 46.39 43.55 42.66 40.96 42.84
Standard deviation (Mg/ha) 16.47 10.62 8.57 15.11 7.01
Maximum (Mg /ha) 112.09 93.25 90.56 89.44 82.94
Minimum (Mg /ha) 11.23 11.88 13.90 11.88 20.18
Coefficient of variation (%) 35.49 24.38 20.09 36.88 16.37

#The original point yield data.

®Cells in which at least 20% of the areas are covered by the measured yield points. Cell values are estimated
by the moving average method.

“Cells in which less than 20% of the area are covered by the measured yield points. Cell values are
estimated by the kriging method.

dCells in which 15-20% of the area are covered by the measured yield points. Cell values are estimated by
the moving average method.

Cells in which 15-20% of the area are covered by the measured yield points. Cell values are estimated by
the kriging method.

given in Table 1. Large spatial variation of the yield, with a 35% coefficient of
variation, existed in the field.

A 0.3 m (1 ft) fixed-distance interval d was used to convert the original yield data
set into a fixed-distance interval data set, as described in the data conversion section.
Cell size for the raster yield map was selected as 6.1 m (20 ft). The moving average
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Figure 3. The partial yield map created by applying the moving average algorithm to those cells in which
at least 20% of the areas are covered by the measured yield points.

algorithm was applied to estimate the average yield in a cell when at least 20% of its
area was covered by the measured yield points. This resulted in a yield map which
shows the yield distribution for 50.7% of the entire field (Figure 3). The descriptive
statistics for this yield data set (Set B) are given in Table 1.

For the rest of the cells, the kriging algorithm was applied to estimate their values.
As discussed before, the available cell values were used instead of using the original
yield measurements in kriging. Spherical semi-variogram models were fitted to the
experimental semi-variances. The size of the neighborhood and the maximum num-
ber of known values in the kriging equations were chosen as 15.2 m (50 ft) and 20
respectively. The kriging process resulted in a partial yield map which covers an
additional 36% of the field. The descriptive statistics for this yield data set (Set C) are
also given in Table 1. A combined yield map is shown in Figure 4. Large spatial
variability of the potato yield across the field was observed. Spatial correlation
among potato yield and quality, field topographical features, soil test nutrient levels,
and other factors are reported elsewhere (Schneider et al., 1997).

In order to compare the performance of the moving average method with that of
the kriging method, cell values were estimated by both methods for those cells in
which 15-20% of the area were covered by the measured yield points. The descriptive
statistics for both yield data sets (Set D, E) are given in Table 1. The mean,
maximum, and minimum cell values by these two methods were similar. However,
the standard deviation and coefficient of variation were much smaller for Set E. This
result may indicate that, when the number of measurement points is small within a
cell, the cell value is better estimated by the kriging method. On the other hand, when
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Figure 4. The combined yield map created by applying both the moving average algorithm and the
kriging algorithm.

the number of measurement points is large within a cell, the moving average
algorithm may provide better estimates.

Uncertainty index maps based on the area coverage of the measured yield points
(Figure 5) and the kriging variance (Figure 6) were developed. Clearly, the
uncertainty index based on the area coverage (Figure 5) was inversely proportional
to the density of the measured yield points (Figure 2). Although this index is easy to
calculate, caution needs to be taken with interpretation. Since it only reflects the
number of measurements taken to determine the average yield within each cell, the
higher uncertainty indexes for some cells may be inflated when the yield distribution
is quite uniform. In other words, high accuracy in estimation can be achieved for a
uniformly distributed variable with only a limited number of measurements.
Practically, crop yield exhibits large spatial variability within a field, and the use of
this type of uncertainty index makes a reasonable simplification.

On the other hand, the uncertainty index based on kriging variance has a good
theoretical foundation. A cell estimate with smaller kriging variance is always better
than an estimate with larger kriging variance. However, the kriging variance is
largely dependent on the accurate determination of the yield semi-variogram.

The uncertainty index maps can help make visual judgment on the quality of the
related yield map. This index can also be further explored and may be incorporated
in some statistical or stochastical models which require yield input along with its
range or distribution. Further work is needed to combine the uncertainty index maps
generated by both algorithms into one unique uncertainty index map.
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Figure 5. The uncertainty index map based on the areal coverage of the measured yield points.
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Figure 6. The uncertainty index map based on the kriging variance.
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Conclusions

A procedure for converting the point yield measurement data set into yield maps and
for assessing the accuracy of the resulting maps was developed. Two important
concepts, data discretization and uncertainty index map, were proposed. The discrete
data set in a fixed-distance interval is a realistic approximation of the continuous
yield variable. The uncertainty index map allows us to evaluate the reliability and
accuracy of the yield maps. The proposed procedure is particularly useful in
situations when the measured yield points can not cover the entire field.

Notes

1. Mention of trade names does not imply preferential treatment or endorsement by Deere, USDA, or
WSU over similar products available from other sources.
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